
Exploring Adaptive MCTS with TD Learning in miniXCOM

Kimiya Saadat
1 and Richard Zhao

1

1 Department of Computer Science, University of Calgary, Calgary, AB, Canada

Abstract
In recent years, Monte Carlo tree search (MCTS) has achieved widespread adoption within the

game community. Its use in conjunction with deep reinforcement learning has produced success

stories in many applications. While these approaches have been implemented in various games,

from simple board games to more complicated video games such as StarCraft, the use of deep

neural networks requires a substantial training period. In this work, we explore on-line

adaptivity in MCTS without requiring pre-training. We present MCTS-TD, an adaptive MCTS

algorithm improved with temporal difference learning. We demonstrate our new approach on

the game miniXCOM, a simplified version of XCOM, a popular commercial franchise

consisting of several turn-based tactical games, and show how adaptivity in MCTS-TD allows

for improved performances against opponents.

Keywords 1
reinforcement learning, temporal-difference learning, Monte Carlo tree search, MCTS, XCOM

1. Introduction

Games are suitable platforms for evaluating

algorithms of artificial intelligence (AI). Games

are often in environments with unambiguous rules

and without external interference. They can

capture the essence of real-world scenarios while

maintaining a well-defined environment. AI

agents that have performed well in games have

been adapted to work in non-game applications

[13]. However, game playing as an AI problem

can be extremely challenging due to the

complexity of the game worlds. This is an

interesting research area that has attracted many

researchers’ attention.

In recent years, Monte Carlo tree search

(MCTS) has been adapted to great success in

many different game applications. Its use in

conjunction with deep reinforcement learning has

produced success stories in many applications

[10]. However, the use of deep neural networks

requires substantial pre-training in general. While

pre-training is possible for many applications, it is

not always possible for an AI agent to have access

Proceedings of the Ninth AIIDE Workshop on Experimental

Artificial Intelligence in Game (EXAG 2022), October, 2022,
Pomona, USA.

EMAIL: kimiya.saadat@ucalgary.ca (Kimiya Saadat);

richard.zhao1@ucalgary.ca (Richard Zhao)
ORCID: 0000-0001-8257-4291 (Richard Zhao)

Copyright © 2022 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

to an environment for pre-training. Examining the

ability of a game-playing AI agent to adapt to a

game and its opponents on-line and during

gameplay without any prior knowledge is an

interesting area of research.

In this work, we present MCTS-TD, an

adaptive MCTS algorithm improved with

temporal difference learning. Our proposed

algorithm combines both the on-line nature of

MCTS and the adaptive advantages of

reinforcement learning, taking the best of both

worlds.

Our research question is: can MCTS be guided

by reinforcement learning so that it effectively

adapts to its opponents’ strategies in an on-line

fashion? We answer the research question by

conducting experiments with MCTS-TD,

comparing it to the original MCTS, another

approach called SARSA-UCT, and a rule-based

approach on the game miniXCOM, a turn-based

grid-based tactical shooting game.

This paper makes the following contributions:

1. MCTS-TD, an improved MCTS

algorithm that utilizes reinforcement learning

to obtain estimated utility values of game

states, and uses the utility values to guide the

search in MCTS.

2. An empirical evaluation of MCTS-TD in

a turn-based game to demonstrate its on-line

adaptivity in different scenarios.

2. Related Works

Researchers have deployed a variety of AI

techniques for games. Search [15], planning [16],

and learning [17] are all popular approaches being

utilized to this day. MCTS [4] is a search

algorithm that has become the focus of much

research in gaming AI. In this section, we first

explore the origin of MCTS and its variants used

in creating game-playing AI. Next, reinforcement

learning and temporal difference learning are

introduced, alongside recent use cases. Finally,

we look at notable intersections between MCTS

and reinforcement learning.

2.1. Monte Carlo Tree Search

The MCTS algorithm has shown to be widely

effective in creating gaming AI agents. The basis

of this algorithm includes building an asymmetric

tree and searching the state space for the optimal

solution while simulating the game and

transferring the outcome of each episode to nodes

involved in that episode.

Coulom [4] combined Monte Carlo evaluation

with tree search to create an agent that was able to

play the game of GO. This resulted in the creation

of the Monte Carlo tree search algorithm. Chaslot

et al. [3] proposed the use of MCTS in gaming

applications. A variation of the original MCTS is

the Upper Confidence bounds applied to Trees

(UCT) algorithm. UCT uses UCBI selection as

the policy for selecting the next node. This

algorithm is the original UCT. There are also

variations of UCT such as standard UCT.

Standard UCT only stores one state in the memory

while original UCT stores all the visited states

when memory is available and does not discount

rewards in contrast to original UCT. Moreover,

standard UCT treats the intermediate rewards and

final rewards as the same and uses the sum of all

rewards in the backpropagation step and updates

all the states with the same value, while original

UCT updates each state by reward and return

calculated for that state [23].

The MCTS algorithm and its variations have

been employed in many games including Chess,

Poker, and commercial video games such as

StarCraft [20]. One of the advantages of MCTS is

that does not need domain-specific knowledge to

perform. More recently, MCTS has been

successfully deployed in the imperfect

information card game Cribbage [11], the board

game Terraforming Mars [6], and level generation

problems [1], among many other applications.

2.2. Reinforcement Learning

In reinforcement learning, an agent learns to

decide what action to take in each step while

interacting with the environment and receiving

rewards. The goal of reinforcement learning

algorithms is to maximize the cumulative reward

signal [19]. Two important functions that are

frequently used in reinforcement learning

algorithms are the value function and policy

function. A value function of a state can be

defined as the expected cumulative reward if the

agent starts from that state. A policy function is a

mapping from a state to an action. The algorithms

in reinforcement learning can be categorized into

different categories based on certain

characteristics. One categorization is based on the

presence of a model of the environment. Model-

based methods use a model of the environment

while model-free methods do not work with a

model. In model-based approaches, a model is

explicitly defined with the transition probability

distribution and the reward function. A model of

the environment can predict the next state and the

next reward using the current state and action. In

model-free approaches, state values are directly

learned without underlining assumptions about a

model.

At the center of the model-free algorithms,

there is temporal difference (TD) learning, which

uses ideas from both Monte Carlo methods and

dynamic programming [19]. Temporal difference

learning uses a concept named “bootstrapping” in

which it can update estimates based on other

estimates and it does not need to wait until the end

of a game to get an outcome from the environment

[19]. One of the notable successes of temporal

difference learning is TD-Gammon which was

able to play backgammon at the level of the world

championship [7, 22]. In TD-Gammon, a neural

network acts as an evaluation function for valid

moves and is trained by the temporal difference

approach.

Many of today’s state-of-art reinforcement

learning algorithms use temporal difference

learning as part of their learning mechanism.

Google’s DeepMind built an agent that can play a

set of Atari games. This deep reinforcement

learning algorithm named Deep Q Learning can

learn policies from high-dimensional input states

such as images. The Q-network in this algorithm

uses temporal difference as part of its learning

algorithm for updating the weights [14].

Researchers have since applied reinforcement

learning algorithms to many gaming applications

[24], procedural content generation tasks [12],

and game design and automated test challenges

[8]. While reinforcement learning approaches that

utilize deep neural networks are powerful, their

substantial training time is not suitable for the

research question we want to explore, which is on-

line adaptation.

2.3. Intersection of MCTS and
Reinforcement Learning

Researchers have examined the combined use

of MCTS and reinforcement learning. One of the

most prominent examples of MCTS and

reinforcement learning is the AlphaGo algorithm

[18], which uses two neural networks for policy

and value functions that are pre-trained with

human player data as well as self-play. During on-

line play, the neural networks continue to be

refined by using a UCT-like algorithm. This

algorithm was able to defeat the best human

players in Go [23]. Ilhan and Etaner-Uyar [9]

proposed an approach that used MCTS rollouts as

the agent's past experience and used this past

experience in their reinforcement learning

algorithm. They assumed that the forward model

of the environment was accessible. To achieve our

goal which is rapid adaptation to different

strategies used by opponents, we cannot assume a

fixed policy for an opponent; the next state in the

environment depends on the opponent's strategy.

As a result, we use the agent's past experiences to

calculate TD, not the simulated rollouts as we

cannot simulate accurately due to opponent's

variation.

Vodopivec et al. [23] designed an algorithm

based on a temporal-difference tree search

framework, SARSA-UCT(), which used UCT as

the MCTS algorithm and Sarsa as the

reinforcement learning part. They were able to

show that bootstrapping and TD backups were

beneficial over MC backups in an MCTS-like

search. In our proposed work, MCTS backups are

not replaced by TD. Instead, our algorithm uses

TD as a guide for the MCTS algorithm.

3. Description of miniXCOM

Our game, miniXCOM, is inspired by XCOM

[21], a popular commercial franchise consisting of

several turn-based tactical games. The first game

of XCOM was released in 1994 named UFO:

Enemy Unknown. In 2012, a remake of the first

game was developed and released under the name

XCOM: Enemy Unknown (Figure 1). In these two

games, the player acts as the commander of a

military squad trying to save Earth from alien

invasion. These games follow a similar setup of a

human squad vs. an alien squad. The player

controls a squad of human soldiers on a grid-based

layout, with the goal of hunting down aliens and

completing objectives. The layouts of the maps

vary from level to level. The two sides take turns

controlling their squad, issuing commands such as

move or attack. Line-of-sight is required for

attacks.

Our game, miniXCOM, takes the turn-based

tactical game and standardized it so that no side

has an unfair disadvantage in terms of squad size

or map layout. In miniXCOM, the game is played

on an n-by-n grid, with a fixed and equal number

of soldiers for each squad of humans and aliens.

Blocks on the grid can be used as covers for these

soldiers, as attacks require line-of-sight.

3.1. Rules of miniXCOM

Most of the rules and gameplay in miniXCOM

are inspired by the original game. It is a two-

player game, humans vs. aliens. While in XCOM,

usually aliens are NPCs and humans are

Figure 1: A grid-based battle field in the first
game of the franchise, XCOM: Enemy Unknown,
showing two soldiers.

controlled by the player, in miniXCOM, either or

both sides can be AI-controlled, allowing us to

experiment with different AI agents.

The game is turn-based. In each turn each

player has the ability to issue commands to one

squad member under their control. A squad

member can move by taking a certain maximum

number of steps, shoot an enemy if in line-of-

sight, or performing a shoot action immediately

following a move action.

Moving to grid cell is only possible when there

is a path to it and only if it requires at most a

predetermined number of steps. A squad member

can only move in four directions, up, down, left,

and right, and cannot move through blocks.

Shooting a squad member is only possible if

the other squad member is an enemy and there are

no blocks in the line of sight. Line-of-sight is

calculated by drawing a straight line between two

points. Shooting immediately kills the enemy.

4. Methodology

Deep learning-based approaches often require

substantial training time [5]. While these are

applicable when pre-training is possible,

interesting scenarios arise in applications when

decisions need to be made without prior

knowledge and learning or adaptation is only

possible during actual gameplay. We are

interested in game-playing agents that can work

well in real-time without pre-training. Therefore,

our work focuses on the use of MCTS-based

approaches.

4.1. MCTS

As described by Browne et al. [2], MCTS is a

tree search algorithm that repeatedly builds a

game tree by playing out simulations with random

moves (called rollouts) and recording the results

of the different moves. Each node in the search

tree accumulates information on the value of this

node based on previous rollouts. This information

is backpropagated through parent nodes.

In MCTS, four steps are repeated until the

algorithm is stopped: selection, expansion,

rollout, and backpropagation. In the selection

step, a node to expand on is selected according to

a selection criterion. This includes going from the

root of the tree to one of its nodes that has already

been added to the tree. In the expansion step, the

selected node is added to the search tree. In the

rollout step, the game is simulated and random

actions are taken from this new node to the end of

the game, and the results are totaled into a value

for this node. Finally, in the backpropagation step,

the cumulative score from the rollouts is

backpropagated from the new node to the root. In

each iteration of the four steps, one new node is

added to the search tree.

As an on-line search algorithm, MCTS does

not require pre-training or pre-computation of

values. MCTS is also an anytime algorithm, in

that it can be stopped at any time and it will return

the best action found until that point based on its

cumulated rollout information. This makes it an

ideal candidate for our application.

4.2. UCT

A commonly used selection criterion used in

the MCTS selection step is called UCT. The UCT

algorithm chooses the new node according to

arg 𝑚𝑎𝑥

𝑣′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑣
𝑄(𝑣′)

𝑁(𝑣′)
+ 𝐶√

2 ln 𝑁(𝑣)

𝑁(𝑣′)
 (1)

In this formula, the first term represents

exploitation while the second term represents

exploration. Q(v) is the current total value at node

v; N(v) is the number of times node v has been

visited in the selection step; C is a constant chosen

to control the rate of exploration. The two terms

in the equation combine the advantage of

choosing the node with the highest value with the

necessity of exploring little-visited nodes.

While MCTS has many advantages in our

application, it does not adapt to specific scenarios

or opponent strategies. As a result, we introduce a

reinforcement learning technique.

4.3. TD Learning

In reinforcement learning, an agent is not

given instructions and has to discover the

appropriate actions to maximize a notion of a

reward over a discrete number of steps. At time t,

the agent is in state st, and takes an action at. A

Figure 2: The setup used in the
experiments.

reward rt is received, and the agent transitions to

the next state st+1. Actions are chosen according to

a policy π.

TD learning is a model-free reinforcement

learning technique that estimates the state value

function under a policy. In TD learning, the values

of the observed states are adjusted using the

observed transitions:
𝑈(𝑠𝑡) = 𝑈(𝑠𝑡) + 𝛼(𝑟(𝑠𝑡) + 𝛾𝑈(𝑠𝑡+1) − 𝑈(𝑠𝑡)) (2)

U(st) is the (utility) value of state s at time t. α

is the learning rate and γ is the discount factor of

the estimated future state value. TD learning

works by adjusting the value estimates towards

the ideal equilibrium that holds locally when the

value estimates are correct. The equilibrium is

given by the equation:

𝑈(𝑠) = 𝑟(𝑠) + 𝛾 ∑ 𝑃(𝑠′ |𝑠, 𝜋(𝑠))𝑈(𝑠′ 𝑠′) (3)

TD learning can be used passively to observe

and learn state values without influencing the

policy that determines the actions at each state.

However, its learned state values can be powerful

in guiding search trajectories. While there are

other reinforcement learning algorithms, we

chose TD learning as it is a straight-forward way

of estimating state values without having access

to state transition information. In the following

section, we describe how we use TD learning to

help provide MCTS with adaptive search

trajectories.

4.4. MCTS with TD Learning

To provide MCTS with the ability to adapt to

specific opponent strategies, we propose MCTS-

TD, using TD learning to provide estimates of

state values at the same time as MCTS builds its

search tree. While this framework can be

generalized to a variety of reinforcement learning

methods, we showcase the effectiveness of TD

learning in our miniXCOM example and

demonstrate rapid adaptation without needing

pre-training. The learned state values are an

effective representation of the opponent’s strategy

and utilizing it allows the agent to adapt to the

opponent’s strategy, providing an increased

return.

MCTS-TD is shown in Algorithm 1. In the

BestChild() function, the choosing of the next

node is augmented by a new term d U(s(v’)), with

the utility value of the child state estimated from

the TD learning update. We call the d parameter

TD factor, which can be adjusted to control the

weight of using the utility value from TD learning.

TD learning is performed within the context of

the game. The Update() function is called after

MCTS-TD returns an action to the game, the

action is performed, and a reward is obtained. To

account for opponent actions in the game, we call

the Update() function a second time, after the

opponent performs an action. In this way, two

updates are performed per step, and MCTS-TD

Algorithm 1: The MCTS-TD Algorithm

function: MCTS-TD(state s0)
 Create root node v0 with state s0.
 while within time or iteration limit do
 v ← SelectNode(v0).
 r ← Rollout(s(v))
 BackPropogate(v, r).
 return a(BestChild(v0, 0))

function: SelectNode(node v)
 while v is non-terminal do
 if v not fully expanded then
 choose untried action a
 v’ ← simulate action a at s(v)
 add v’ as a new child to v
 return v’
 else
 v ← BestChild(v, C)
 return v

function: Rollout(state s)
 while s is non-terminal do
 choose a from available actions in s at

random
 s ← simulate action a at s
 return reward r at s

function: BackPropogate(node v, reward r)
 while v is not null do
 N(v) ← N(v) +1
 Q(v) ← Q(v) + r
 v ← parent of v

function: BestChild(node v, constant C,

td_factor d)

 return

function: Update(td_state st, td_state st+1,

td_reward r)
 if td_state s not in S then
 Add s to S
 U(s) = 0
 else
 U(st) = U(st) + α(r(st) + γ U(st+1) – U(st))

takes the consequences of opponent actions into

consideration.

5. Experiments

We ran experiments in miniXCOM to compare

MCTS-TD with the original MCTS, SARSA-

UCT [23], as well as a rule-based agent, RB1,

described in the next section. The grid is chosen

to be 6 by 6, with 2 squad members on each side

and walls represented by solid blocks as shown in

Figure 2. The two sides take turn moving. In each

turn, one squad member can be moved by a

maximum of three grid cells, horizontally or

vertically, and can shoot at an opponent squad

member if there is line of sight.

The experiments consisted of comparing the

results of MCTS-TD with the original MCTS,

SARSA-UCT, and RB1. In each set of pair-wise

experiments, 50 rounds of game were played out

in one run, and this process was repeated 20 times

to produce 20 runs of 50 rounds each. To avoid

any potential advantages associated with being

the first player or the second player, the two sides

took turns making the first move – each side

going first in 25 rounds. A round ends in a draw if

no side wins after making 20 moves. For MCTS-

TD, TD state utility values were cleared at the

start of each run, ensuring that the agent started

the game with no prior knowledge from pre-

training. TD learning retained its utility values

within the 50 rounds to demonstrate the adaptivity

of the agent. The TD factor was set to 1; learning

rate was set to 0.8; the exploration constant for

MCTS was to set to 1/√2 . These values are kept

consistent across all algorithms in the

experiments. We implemented the experiment

agents in Python 3. The experiments were set up

to run on a machine with Intel i5-9300H CPU

running at 2.4 GHz.

5.1. Results

RB1 is a rule-based agent that always picks the

left corridor on the grid to launch its attack. Its

rules are that if a squad member has an enemy in

the line of sight, always shoot at the enemy. If

there are multiple enemies in the line of sight,

choose one at random. If a squad member can

move to a location that has the line of sight with

an enemy, then move and shoot. Otherwise, move

the left-most squad member towards the left

corridor.

In MCTS-TD, the TD reward is generated by

examining how the action affected the current

state of the game. A reward of 10 is assigned if the

current action destroyed one of the enemy squad

members. A reward of -10 is assigned if the

current action (by the opponent) destroyed one of

the squad members on the agent’s side.

For the representation of states for TD

learning, a 3 by 3 grid centered around the current

location of the most recently moved squad

member is used. This representation ensures the

Figure 3: Results of MCTS-TD vs. RB1 averaged
over 20 runs. The error bar represents one
standard deviation.

Figure 4: Results of MCTS-TD vs. SARSA-UCT
averaged over 20 runs.

Figure 5: Results of MCTS-TD vs. MCTS
averaged over 20 runs.

state space is kept at a reasonable level, which is

especially important for on-line learning and

adaptation.

Figure 3 shows the results of MCTS-TD vs.

RB1. MCTS-TD performed much better against

RB1. MCTS-TD rapidly adapted to the specific

strategy used by the rules of RB1. In the first 10

rounds, the two sides were evenly matched, and

MCTS-TD clearly and consistently outmatched

RB1 from that point on.

Figure 4 shows the results of MCTS-TD vs.

SARSA-UCT. MCTS-TD clearly held an

advantage over SARSA-UCT throughout the 50

rounds. On average, it was winning 6.11 rounds

per 10 rounds, holding an advantage even from

the first 10 rounds. SARSA-UCT did slightly

worse than RB1 against MCTS-TD as the

exploration of SARSA-UCT costed some games

while RB1 never needed to explore.

Figure 5 shows the results of MCTS-TD vs.

MCTS. We see that although the winning rates of

MCTS-TD against MCTS were lower compared

to it against RB1 or SARSA-UCT, it still

consistently held an advantage throughout the

games. While MCTS did not deploy a specific

strategy and it had a considerable amount of

randomness due to the exploratory nature of

MCTS, MCTS-TD still quickly adapted to learn

good positions for its squad members and held a

higher winning rate starting from the first 10

rounds.

Table 1 provides an overview of the combined

total results from all runs. Draws are not shown in

the table. The results are consistent with the

discussions above and MCTS-TD outmatched

other agents. The difference between the winning

rates for each pair is statistically significant at

99% confidence level using a paired t-test (p-

values < 0.01 in each case).

6. Conclusion

We are interested in examining game-playing

AI agents that can perform well without

opportunities for pre-training and agents that can

perform on-line adaptations to take advantages of

the weaknesses of opponents. In this research, we

propose MCTS-TD, an adaptive MCTS algorithm

with temporal difference learning. While MCTS

is an effective on-line algorithm, the added power

of reinforcement learning allows the algorithm to

adapt to an opponent while the game is being

played. We demonstrate the advantages of

MCTS-TD in the game miniXCOM, a game

inspired by the XCOM series of turn-based

tactical games. Our results show that rapid

adaptivity is promising in increasing the winning

rate of the game-playing AI.

While the compressed local representation of

the TD state allows for this approach to work on

larger and more complex maps, we expect future

work to examine other methods of representing

information as part of a state, when working on

more complex maps. One research direction is to

examine the automated extraction of important

features in a much larger state space. We will

examine the effectiveness of adding

reinforcement learning to MCTS in a variety of

domains. MCTS-TD is applicable to other

domains as there is nothing specific to the

commercial-game-inspired XCOM domain in our

algorithm. Our algorithm is agnostic to the TD

reward that is passed in from the environment.

Other domains can be explored in future work.

Table 1
Combined results with standard deviations in
brackets. Some rounds ended in a draw due to
neither side winning at time out.

Winning
rate out

of 10

RB1 MCTS SARSA-
UCT

MCTS-
TD

MCTS
vs. RB1

5.81
(1.42)

4.19
(1.42)

SARSA-
UCT vs.

RB1

3.55
(1.57)

 4.59
(1.76)

MCTS-
TD vs.
RB1

3.30
(1.55)

 6.67
(1.6)

MCTS-
TD vs.

SARSA-
UCT

 2.64
(1.34)

6.11
(1.33)

MCTS-
TD vs.
MCTS

 3.46
(1.47)

 5.55
(1.57)

7. References

[1] Bhaumik, D.; Khalifa, A.; Green, M.; and

Togelius, J. 2020. Tree search versus

optimization approaches for map generation.

In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment, 24-30.

[2] Browne, C. B.; Powley, E.; Whitehouse, D.;

Lucas, S. M.; Cowling, P. I.; Rohlfshagen,

P.; Tavener, S.; Perez, D.; Samothrakis, S.;

and Colton, S. 2012. A survey of monte carlo

tree search methods. IEEE Transactions on

Computational Intelligence and AI in

Games, 4(1):1–43.

[3] Chaslot, G.; Bakkes, S.; Szita, I.; and

Spronck, P. 2008. Monte-carlo tree search: A

new framework for game ai. In Proceedings

of the AAAI Conference on Artificial

Intelligence and Interactive Digital

Entertainment, 216-217.

[4] Coulom, R. 2006. Efficient selectivity and

backup operators in Monte-Carlo tree search.

In Proceedings of the 5th international

conference on Computers and games, 72-83.

[5] Gabriel, V.; Du, Y.; and Taylor, M.E. 2019.

Pre-training with non-expert human

demonstration for deep reinforcement

learning. The Knowledge Engineering

Review, 34.

[6] Gaina, R.D.; Goodman, J.; and Perez-

Liebana, D. 2021. TAG: Terraforming Mars.

In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment, 148-155.

[7] Galway L.; Charles D.; and Black M.; 2008.

Machine learning in digital games: A survey.

Artificial Intelligence Review, Springer

Nature. 29(2):123-161

[8] Gutiérrez-Sánchez, P.; Gómez-Martín,

M.A.; González-Calero, P.A.; and Gómez-

Martín, P.P. 2021. Reinforcement learning

methods to evaluate the impact of AI changes

in game design. In Proceedings of the AAAI

Conference on Artificial Intelligence and

Interactive Digital Entertainment, 10-17.

[9] Ilhan, E.; and Etaner-Uyar, A.Ş. 2017. Monte

Carlo tree search with temporal-difference

learning for general video game playing. In

Proceedings of the IEEE Conference on

Computational Intelligence and Games, 317-

324.

[10] Kartal, B.; Hernandez-Leal, P.; and Taylor,

M.E. 2019. Action guidance with MCTS for

deep reinforcement learning. In Proceedings

of the AAAI Conference on Artificial

Intelligence and Interactive Digital

Entertainment, 153-159.

[11] Kelly, R.; and Churchill, D. 2017.

Comparison of Monte Carlo Tree Search

Methods in the Imperfect Information Card

Game Cribbage. 26th Annual Newfoundland

Electrical and Computer Engineering

Conference.

[12] Khalifa, A.; Bontrager, P.; Earle, S.; and

Togelius, J. 2020. Pcgrl: Procedural content

generation via reinforcement learning. In

Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment, 95-101.

[13] Livingston, S.; and Risse, M. 2019. The

future impact of artificial intelligence on

humans and human rights. Ethics &

international affairs, 33(2): 141-158.

[14] Mnih V.; Kavukcuoglu K.; Silver, D.;

Graves, A.; Antonoglou, I.; Wierstra, D.; and

Riedmiller, M.; 2013. Playing Atari with

Deep Reinforcement Learning.

arXiv:1312.5602.

[15] Pereira, L.V.; Chaimowicz, L.; and Lelis,

L.H.. 2021. Birds in boots: learning to play

angry birds with policy-guided search. In

Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment, 74-81.

[16] Sauma-Chacón, P.; and Eger, M. 2020.

Paindemic: A planning agent for pandemic.

In Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital

Entertainment, 287-293.

[17] Sieusahai, A.; and Guzdial, M. 2021.

Explaining deep reinforcement learning

agents in the Atari domain through a

surrogate model. In Proceedings of the AAAI

Conference on Artificial Intelligence and

Interactive Digital Entertainment, 82-90.

[18] Silver, D.; Huang, A.; Maddison, C. J.; Guez,

A.; Sifre, L.; van den Driessche, G.;

Schrittwieser, J.;Antonoglou, I.;

Panneershelvam, V.; Lanctot, M.; Dieleman,

S.; Grewe, D.; Nham, J.; Kalch-Brenner, N.;

Sutskever, I.; Lillicrap, T.; Leach, M.;

Kavukcuoglu, K., Graepel; T., and Hassabis,

D.; 2016. Mastering the game of Go with

deep neural networks and tree search. Nature,

529(7587): 484-489.

[19] Sutton, R. S.; and Barto, A. G. 2018.

Reinforcement learning: An introduction.

MIT Press Ltd.

[20] Świechowski. M.; Godlewski, K.; Sawicki,

B.; and Mańdziuk J.; 2022. Monte Carlo Tree

Search: A Review of Recent Modifications

and Applications. arXiv:2103.04931.

[21] Take-Two Interactive. 2022. XCOM 2.

https://www.xcom.com/. Accessed: 2022-

08-08.

[22] Tesauro G. 1995. Temporal difference

learning and td-gammon. Communications

of the ACM, 38(3):58–68.

[23] Vodopivec, T.; Samothrakis, S.; and Šter, B.

2017. On Monte Carlo Tree Search and

Reinforcement Learning. Journal of

Artificial Intelligence Research, 60:881–936.

[24] You, Y.; Li, L.; Guo, B.; Wang, W.; and Lu,

C. 2020 Combinatorial Q-Learning for Dou

Di Zhu. In Proceedings of the AAAI

Conference on Artificial Intelligence and

Interactive Digital Entertainment, 301-307.

	1. Introduction
	2. Related Works
	2.1. Monte Carlo Tree Search
	2.2. Reinforcement Learning
	2.3. Intersection of MCTS and Reinforcement Learning

	3. Description of miniXCOM
	3.1. Rules of miniXCOM

	4. Methodology
	4.1. MCTS
	4.2. UCT
	4.3. TD Learning
	4.4. MCTS with TD Learning

	5. Experiments
	5.1. Results

	6. Conclusion
	7. References

