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Abstract  
In recent years, Monte Carlo tree search (MCTS) has achieved widespread adoption within the 

game community. Its use in conjunction with deep reinforcement learning has produced success 

stories in many applications. While these approaches have been implemented in various games, 

from simple board games to more complicated video games such as StarCraft, the use of deep 

neural networks requires a substantial training period. In this work, we explore on-line 

adaptivity in MCTS without requiring pre-training. We present MCTS-TD, an adaptive MCTS 

algorithm improved with temporal difference learning. We demonstrate our new approach on 

the game miniXCOM, a simplified version of XCOM, a popular commercial franchise 

consisting of several turn-based tactical games, and show how adaptivity in MCTS-TD allows 

for improved performances against opponents.  
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1. Introduction 

Games are suitable platforms for evaluating 

algorithms of artificial intelligence (AI). Games 

are often in environments with unambiguous rules 

and without external interference. They can 

capture the essence of real-world scenarios while 

maintaining a well-defined environment. AI 

agents that have performed well in games have 

been adapted to work in non-game applications 

[13]. However, game playing as an AI problem 

can be extremely challenging due to the 

complexity of the game worlds. This is an 

interesting research area that has attracted many 

researchers’ attention. 

In recent years, Monte Carlo tree search 

(MCTS) has been adapted to great success in 

many different game applications. Its use in 

conjunction with deep reinforcement learning has 

produced success stories in many applications 

[10]. However, the use of deep neural networks 

requires substantial pre-training in general. While 

pre-training is possible for many applications, it is 

not always possible for an AI agent to have access 
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to an environment for pre-training. Examining the 

ability of a game-playing AI agent to adapt to a 

game and its opponents on-line and during 

gameplay without any prior knowledge is an 

interesting area of research. 

In this work, we present MCTS-TD, an 

adaptive MCTS algorithm improved with 

temporal difference learning. Our proposed 

algorithm combines both the on-line nature of 

MCTS and the adaptive advantages of 

reinforcement learning, taking the best of both 

worlds. 

Our research question is: can MCTS be guided 

by reinforcement learning so that it effectively 

adapts to its opponents’ strategies in an on-line 

fashion? We answer the research question by 

conducting experiments with MCTS-TD, 

comparing it to the original MCTS, another 

approach called SARSA-UCT, and a rule-based 

approach on the game miniXCOM, a turn-based 

grid-based tactical shooting game. 

This paper makes the following contributions: 

1. MCTS-TD, an improved MCTS 

algorithm that utilizes reinforcement learning 



to obtain estimated utility values of game 

states, and uses the utility values to guide the 

search in MCTS. 

2. An empirical evaluation of MCTS-TD in 

a turn-based game to demonstrate its on-line 

adaptivity in different scenarios. 

2. Related Works 

Researchers have deployed a variety of AI 

techniques for games. Search [15], planning [16], 

and learning [17] are all popular approaches being 

utilized to this day. MCTS [4] is a search 

algorithm that has become the focus of much 

research in gaming AI. In this section, we first 

explore the origin of MCTS and its variants used 

in creating game-playing AI. Next, reinforcement 

learning and temporal difference learning are 

introduced, alongside recent use cases. Finally, 

we look at notable intersections between MCTS 

and reinforcement learning. 

2.1. Monte Carlo Tree Search 

The MCTS algorithm has shown to be widely 

effective in creating gaming AI agents. The basis 

of this algorithm includes building an asymmetric 

tree and searching the state space for the optimal 

solution while simulating the game and 

transferring the outcome of each episode to nodes 

involved in that episode. 

Coulom [4] combined Monte Carlo evaluation 

with tree search to create an agent that was able to 

play the game of GO. This resulted in the creation 

of the Monte Carlo tree search algorithm. Chaslot 

et al. [3] proposed the use of MCTS in gaming 

applications. A variation of the original MCTS is 

the Upper Confidence bounds applied to Trees 

(UCT) algorithm. UCT uses UCBI selection as 

the policy for selecting the next node. This 

algorithm is the original UCT. There are also 

variations of UCT such as standard UCT. 

Standard UCT only stores one state in the memory 

while original UCT stores all the visited states 

when memory is available and does not discount 

rewards in contrast to original UCT. Moreover, 

standard UCT treats the intermediate rewards and 

final rewards as the same and uses the sum of all 

rewards in the backpropagation step and updates 

all the states with the same value, while original 

UCT updates each state by reward and return 

calculated for that state [23]. 

The MCTS algorithm and its variations have 

been employed in many games including Chess, 

Poker, and commercial video games such as 

StarCraft [20]. One of the advantages of MCTS is 

that does not need domain-specific knowledge to 

perform. More recently, MCTS has been 

successfully deployed in the imperfect 

information card game Cribbage [11], the board 

game Terraforming Mars [6], and level generation 

problems [1], among many other applications. 

2.2. Reinforcement Learning 

In reinforcement learning, an agent learns to 

decide what action to take in each step while 

interacting with the environment and receiving 

rewards. The goal of reinforcement learning 

algorithms is to maximize the cumulative reward 

signal [19]. Two important functions that are 

frequently used in reinforcement learning 

algorithms are the value function and policy 

function. A value function of a state can be 

defined as the expected cumulative reward if the 

agent starts from that state. A policy function is a 

mapping from a state to an action. The algorithms 

in reinforcement learning can be categorized into 

different categories based on certain 

characteristics. One categorization is based on the 

presence of a model of the environment. Model-

based methods use a model of the environment 

while model-free methods do not work with a 

model. In model-based approaches, a model is 

explicitly defined with the transition probability 

distribution and the reward function. A model of 

the environment can predict the next state and the 

next reward using the current state and action. In 

model-free approaches, state values are directly 

learned without underlining assumptions about a 

model. 

At the center of the model-free algorithms, 

there is temporal difference (TD) learning, which 

uses ideas from both Monte Carlo methods and 

dynamic programming [19]. Temporal difference 

learning uses a concept named “bootstrapping” in 

which it can update estimates based on other 

estimates and it does not need to wait until the end 

of a game to get an outcome from the environment 

[19]. One of the notable successes of temporal 

difference learning is TD-Gammon which was 

able to play backgammon at the level of the world 

championship [7, 22]. In TD-Gammon, a neural 

network acts as an evaluation function for valid 

moves and is trained by the temporal difference 

approach. 

Many of today’s state-of-art reinforcement 

learning algorithms use temporal difference 



learning as part of their learning mechanism. 

Google’s DeepMind built an agent that can play a 

set of Atari games. This deep reinforcement 

learning algorithm named Deep Q Learning can 

learn policies from high-dimensional input states 

such as images. The Q-network in this algorithm 

uses temporal difference as part of its learning 

algorithm for updating the weights [14]. 

Researchers have since applied reinforcement 

learning algorithms to many gaming applications 

[24], procedural content generation tasks [12], 

and game design and automated test challenges 

[8]. While reinforcement learning approaches that 

utilize deep neural networks are powerful, their 

substantial training time is not suitable for the 

research question we want to explore, which is on-

line adaptation. 

2.3. Intersection of MCTS and 
Reinforcement Learning 

Researchers have examined the combined use 

of MCTS and reinforcement learning. One of the 

most prominent examples of MCTS and 

reinforcement learning is the AlphaGo algorithm 

[18], which uses two neural networks for policy 

and value functions that are pre-trained with 

human player data as well as self-play. During on-

line play, the neural networks continue to be 

refined by using a UCT-like algorithm. This 

algorithm was able to defeat the best human 

players in Go [23]. Ilhan and Etaner-Uyar [9] 

proposed an approach that used MCTS rollouts as 

the agent's past experience and used this past 

experience in their reinforcement learning 

algorithm. They assumed that the forward model 

of the environment was accessible. To achieve our 

goal which is rapid adaptation to different 

strategies used by opponents, we cannot assume a 

fixed policy for an opponent; the next state in the 

environment depends on the opponent's strategy. 

As a result, we use the agent's past experiences to 

calculate TD, not the simulated rollouts as we 

cannot simulate accurately due to opponent's 

variation. 

Vodopivec et al. [23] designed an algorithm 

based on a temporal-difference tree search 

framework, SARSA-UCT(), which used UCT as 

the MCTS algorithm and Sarsa as the 

reinforcement learning part. They were able to 

show that bootstrapping and TD backups were 

beneficial over MC backups in an MCTS-like 

search. In our proposed work, MCTS backups are 

not replaced by TD. Instead, our algorithm uses 

TD as a guide for the MCTS algorithm. 

3. Description of miniXCOM 

Our game, miniXCOM, is inspired by XCOM 

[21], a popular commercial franchise consisting of 

several turn-based tactical games. The first game 

of XCOM was released in 1994 named UFO: 

Enemy Unknown. In 2012, a remake of the first 

game was developed and released under the name 

XCOM: Enemy Unknown (Figure 1). In these two 

games, the player acts as the commander of a 

military squad trying to save Earth from alien 

invasion. These games follow a similar setup of a 

human squad vs. an alien squad. The player 

controls a squad of human soldiers on a grid-based 

layout, with the goal of hunting down aliens and 

completing objectives. The layouts of the maps 

vary from level to level. The two sides take turns 

controlling their squad, issuing commands such as 

move or attack. Line-of-sight is required for 

attacks. 

Our game, miniXCOM, takes the turn-based 

tactical game and standardized it so that no side 

has an unfair disadvantage in terms of squad size 

or map layout. In miniXCOM, the game is played 

on an n-by-n grid, with a fixed and equal number 

of soldiers for each squad of humans and aliens. 

Blocks on the grid can be used as covers for these 

soldiers, as attacks require line-of-sight. 

3.1. Rules of miniXCOM 

Most of the rules and gameplay in miniXCOM 

are inspired by the original game. It is a two-

player game, humans vs. aliens. While in XCOM, 

usually aliens are NPCs and humans are 

 
Figure 1: A grid-based battle field in the first 
game of the franchise, XCOM: Enemy Unknown, 
showing two soldiers. 

 



controlled by the player, in miniXCOM, either or 

both sides can be AI-controlled, allowing us to 

experiment with different AI agents.  

The game is turn-based. In each turn each 

player has the ability to issue commands to one 

squad member under their control. A squad 

member can move by taking a certain maximum 

number of steps, shoot an enemy if in line-of-

sight, or performing a shoot action immediately 

following a move action.  

Moving to grid cell is only possible when there 

is a path to it and only if it requires at most a 

predetermined number of steps. A squad member 

can only move in four directions, up, down, left, 

and right, and cannot move through blocks. 

Shooting a squad member is only possible if 

the other squad member is an enemy and there are 

no blocks in the line of sight. Line-of-sight is 

calculated by drawing a straight line between two 

points. Shooting immediately kills the enemy. 

4. Methodology 

Deep learning-based approaches often require 

substantial training time [5]. While these are 

applicable when pre-training is possible, 

interesting scenarios arise in applications when 

decisions need to be made without prior 

knowledge and learning or adaptation is only 

possible during actual gameplay. We are 

interested in game-playing agents that can work 

well in real-time without pre-training. Therefore, 

our work focuses on the use of MCTS-based 

approaches. 

4.1. MCTS 

As described by Browne et al. [2], MCTS is a 

tree search algorithm that repeatedly builds a 

game tree by playing out simulations with random 

moves (called rollouts) and recording the results 

of the different moves. Each node in the search 

tree accumulates information on the value of this 

node based on previous rollouts. This information 

is backpropagated through parent nodes. 

In MCTS, four steps are repeated until the 

algorithm is stopped: selection, expansion, 

rollout, and backpropagation. In the selection 

step, a node to expand on is selected according to 

a selection criterion. This includes going from the 

root of the tree to one of its nodes that has already 

been added to the tree. In the expansion step, the 

selected node is added to the search tree. In the 

rollout step, the game is simulated and random 

actions are taken from this new node to the end of 

the game, and the results are totaled into a value 

for this node. Finally, in the backpropagation step, 

the cumulative score from the rollouts is 

backpropagated from the new node to the root. In 

each iteration of the four steps, one new node is 

added to the search tree. 

As an on-line search algorithm, MCTS does 

not require pre-training or pre-computation of 

values. MCTS is also an anytime algorithm, in 

that it can be stopped at any time and it will return 

the best action found until that point based on its 

cumulated rollout information. This makes it an 

ideal candidate for our application. 

4.2. UCT 

A commonly used selection criterion used in 

the MCTS selection step is called UCT. The UCT 

algorithm chooses the new node according to 

 
arg 𝑚𝑎𝑥

𝑣′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑣    
𝑄(𝑣′ )

𝑁(𝑣′ )
+ 𝐶√

2 ln 𝑁(𝑣)

𝑁(𝑣′ )
             (1) 

 

In this formula, the first term represents 

exploitation while the second term represents 

exploration. Q(v) is the current total value at node 

v; N(v) is the number of times node v has been 

visited in the selection step; C is a constant chosen 

to control the rate of exploration. The two terms 

in the equation combine the advantage of 

choosing the node with the highest value with the 

necessity of exploring little-visited nodes. 

While MCTS has many advantages in our 

application, it does not adapt to specific scenarios 

or opponent strategies. As a result, we introduce a 

reinforcement learning technique. 

4.3. TD Learning 

In reinforcement learning, an agent is not 

given instructions and has to discover the 

appropriate actions to maximize a notion of a 

reward over a discrete number of steps. At time t, 

the agent is in state st, and takes an action at. A 

 
Figure 2: The setup used in the 
experiments. 



reward rt is received, and the agent transitions to 

the next state st+1. Actions are chosen according to 

a policy π. 

TD learning is a model-free reinforcement 

learning technique that estimates the state value 

function under a policy. In TD learning, the values 

of the observed states are adjusted using the 

observed transitions: 
𝑈(𝑠𝑡) = 𝑈(𝑠𝑡) + 𝛼(𝑟(𝑠𝑡) + 𝛾𝑈(𝑠𝑡+1) − 𝑈(𝑠𝑡))   (2)      

 

U(st) is the (utility) value of state s at time t.  α 

is the learning rate and γ is the discount factor of 

the estimated future state value. TD learning 

works by adjusting the value estimates towards 

the ideal equilibrium that holds locally when the 

value estimates are correct. The equilibrium is 

given by the equation: 

𝑈(𝑠) = 𝑟(𝑠) + 𝛾 ∑ 𝑃(𝑠′ |𝑠, 𝜋(𝑠))𝑈(𝑠′ 𝑠′ )         (3) 

 

TD learning can be used passively to observe 

and learn state values without influencing the 

policy that determines the actions at each state. 

However, its learned state values can be powerful 

in guiding search trajectories. While there are 

other reinforcement learning algorithms, we 

chose TD learning as it is a straight-forward way 

of estimating state values without having access 

to state transition information. In the following 

section, we describe how we use TD learning to 

help provide MCTS with adaptive search 

trajectories. 

4.4. MCTS with TD Learning 

To provide MCTS with the ability to adapt to 

specific opponent strategies, we propose MCTS-

TD, using TD learning to provide estimates of 

state values at the same time as MCTS builds its 

search tree. While this framework can be 

generalized to a variety of reinforcement learning 

methods, we showcase the effectiveness of TD 

learning in our miniXCOM example and 

demonstrate rapid adaptation without needing 

pre-training. The learned state values are an 

effective representation of the opponent’s strategy 

and utilizing it allows the agent to adapt to the 

opponent’s strategy, providing an increased 

return. 

MCTS-TD is shown in Algorithm 1. In the 

BestChild() function, the choosing of the next 

node is augmented by a new term d U(s(v’)), with 

the utility value of the child state estimated from 

the TD learning update. We call the d parameter 

TD factor, which can be adjusted to control the 

weight of using the utility value from TD learning. 

TD learning is performed within the context of 

the game. The Update() function is called after 

MCTS-TD returns an action to the game, the 

action is performed, and a reward is obtained. To 

account for opponent actions in the game, we call 

the Update() function a second time, after the 

opponent performs an action. In this way, two 

updates are performed per step, and MCTS-TD 

Algorithm 1: The MCTS-TD Algorithm 
 
function: MCTS-TD(state s0) 
 Create root node v0 with state s0. 
 while within time or iteration limit do 
  v ← SelectNode(v0). 
  r ← Rollout(s(v)) 
  BackPropogate(v, r). 
 return a(BestChild(v0, 0)) 
 
function: SelectNode(node v) 
 while v is non-terminal do 
  if v not fully expanded then 
   choose untried action a 
   v’ ← simulate action a at s(v) 
   add v’ as a new child to v 
   return v’ 
  else 
   v ← BestChild(v, C) 
 return v 
 
function: Rollout(state s) 
 while s is non-terminal do 
  choose a from available actions in s at 

random 
  s ← simulate action a at s 
 return reward r at s 
 
function: BackPropogate(node v, reward r) 
 while v is not null do 
  N(v) ← N(v) +1 
  Q(v) ← Q(v) + r 
  v ← parent of v 
 
function: BestChild(node v, constant C, 

td_factor d) 
  
 return 
 

     
 

 
function: Update(td_state st, td_state st+1, 

td_reward r) 
 if td_state s not in S then 
  Add s to S 
  U(s) = 0 
 else 
  U(st) = U(st) + α( r(st) + γ U(st+1) – U(st)) 
 



takes the consequences of opponent actions into 

consideration. 

5. Experiments 

We ran experiments in miniXCOM to compare 

MCTS-TD with the original MCTS, SARSA-

UCT [23], as well as a rule-based agent, RB1, 

described in the next section. The grid is chosen 

to be 6 by 6, with 2 squad members on each side 

and walls represented by solid blocks as shown in 

Figure 2. The two sides take turn moving. In each 

turn, one squad member can be moved by a 

maximum of three grid cells, horizontally or 

vertically, and can shoot at an opponent squad 

member if there is line of sight. 

The experiments consisted of comparing the 

results of MCTS-TD with the original MCTS, 

SARSA-UCT, and RB1. In each set of pair-wise 

experiments, 50 rounds of game were played out 

in one run, and this process was repeated 20 times 

to produce 20 runs of 50 rounds each. To avoid 

any potential advantages associated with being 

the first player or the second player, the two sides 

took  turns making the first move – each side 

going first in 25 rounds. A round ends in a draw if 

no side wins after making 20 moves. For MCTS-

TD, TD state utility values were cleared at the 

start of each run, ensuring that the agent started 

the game with no prior knowledge from pre-

training. TD learning retained its utility values 

within the 50 rounds to demonstrate the adaptivity 

of the agent. The TD factor was set to 1; learning 

rate was set to 0.8; the exploration constant for 

MCTS was to set to 1/√2 . These values are kept 

consistent across all algorithms in the 

experiments. We implemented the experiment 

agents in Python 3. The experiments were set up 

to run on a machine with Intel i5-9300H CPU 

running at 2.4 GHz. 

5.1. Results 

RB1 is a rule-based agent that always picks the 

left corridor on the grid to launch its attack. Its 

rules are that if a squad member has an enemy in 

the line of sight, always shoot at the enemy. If 

there are multiple enemies in the line of sight, 

choose one at random. If a squad member can 

move to a location that has the line of sight with 

an enemy, then move and shoot. Otherwise, move 

the left-most squad member towards the left 

corridor.  

In MCTS-TD, the TD reward is generated by 

examining how the action affected the current 

state of the game. A reward of 10 is assigned if the 

current action destroyed one of the enemy squad 

members. A reward of -10 is assigned if the 

current action (by the opponent) destroyed one of 

the squad members on the agent’s side. 

For the representation of states for TD 

learning, a 3 by 3 grid centered around the current 

location of the most recently moved squad 

member is used. This representation ensures the 

 
 

Figure 3: Results of MCTS-TD vs. RB1 averaged 
over 20 runs. The error bar represents one 
standard deviation. 

 
 

Figure 4: Results of MCTS-TD vs. SARSA-UCT 
averaged over 20 runs. 
 

 
 

Figure 5: Results of MCTS-TD vs. MCTS 
averaged over 20 runs. 

 



state space is kept at a reasonable level, which is 

especially important for on-line learning and 

adaptation.  

Figure 3 shows the results of MCTS-TD vs. 

RB1. MCTS-TD performed much better against 

RB1. MCTS-TD rapidly adapted to the specific 

strategy used by the rules of RB1. In the first 10 

rounds, the two sides were evenly matched, and 

MCTS-TD clearly and consistently outmatched 

RB1 from that point on. 

Figure 4 shows the results of MCTS-TD vs. 

SARSA-UCT. MCTS-TD clearly held an 

advantage over SARSA-UCT throughout the 50 

rounds. On average, it was winning 6.11 rounds 

per 10 rounds, holding an advantage even from 

the first 10 rounds. SARSA-UCT did slightly 

worse than RB1 against MCTS-TD as the 

exploration of SARSA-UCT costed some games 

while RB1 never needed to explore. 

Figure 5 shows the results of MCTS-TD vs. 

MCTS. We see that although the winning rates of 

MCTS-TD against MCTS were lower compared 

to it against RB1 or SARSA-UCT, it still 

consistently held an advantage throughout the 

games. While MCTS did not deploy a specific 

strategy and it had a considerable amount of 

randomness due to the exploratory nature of 

MCTS, MCTS-TD still quickly adapted to learn 

good positions for its squad members and held a 

higher winning rate starting from the first 10 

rounds. 

Table 1 provides an overview of the combined 

total results from all runs. Draws are not shown in 

the table. The results are consistent with the 

discussions above and MCTS-TD outmatched 

other agents. The difference between the winning 

rates for each pair is statistically significant at 

99% confidence level using a paired t-test (p-

values < 0.01 in each case). 

6. Conclusion 

We are interested in examining game-playing 

AI agents that can perform well without 

opportunities for pre-training and agents that can 

perform on-line adaptations to take advantages of 

the weaknesses of opponents. In this research, we 

propose MCTS-TD, an adaptive MCTS algorithm 

with temporal difference learning. While MCTS 

is an effective on-line algorithm, the added power 

of reinforcement learning allows the algorithm to 

adapt to an opponent while the game is being 

played. We demonstrate the advantages of 

MCTS-TD in the game miniXCOM, a game 

inspired by the XCOM series of turn-based 

tactical games. Our results show that rapid 

adaptivity is promising in increasing the winning 

rate of the game-playing AI. 

While the compressed local representation of 

the TD state allows for this approach to work on 

larger and more complex maps, we expect future 

work to examine other methods of representing 

information as part of a state, when working on 

more complex maps. One research direction is to 

examine the automated extraction of important 

features in a much larger state space. We will 

examine the effectiveness of adding 

reinforcement learning to MCTS in a variety of 

domains. MCTS-TD is applicable to other 

domains as there is nothing specific to the 

commercial-game-inspired XCOM domain in our 

algorithm. Our algorithm is agnostic to the TD 

reward that is passed in from the environment. 

Other domains can be explored in future work. 

 
Table 1 
Combined results with standard deviations in 
brackets. Some rounds ended in a draw due to 
neither side winning at time out. 

Winning 
rate out 

of 10 

RB1 MCTS SARSA-
UCT 

MCTS-
TD 

MCTS 
vs. RB1 

5.81 
(1.42) 

4.19 
(1.42) 

  

SARSA-
UCT vs. 

RB1 

3.55 
(1.57) 

 4.59 
(1.76) 

 

MCTS-
TD vs. 
RB1 

3.30 
(1.55) 

  6.67 
(1.6) 

MCTS-
TD vs. 

SARSA-
UCT 

  2.64 
(1.34) 

6.11 
(1.33) 

MCTS-
TD vs. 
MCTS 

 3.46 
(1.47) 

 5.55 
(1.57) 
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